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Abstract. We present a study of the flavor asymmetry of polarized anti-quarks in the nucleon using the
meson cloud model. We include contributions both from the vector mesons and the interference terms
of pseudoscalar and vector mesons. Employing the bag model, we first give the polarized valence quark
distribution of the ρ meson and the interference distributions. Our calculations show that the interference
effect mildly increases the prediction for ∆d̄(x) − ∆ū(x) at intermediate x region. We also discuss the
contribution of “Pauli blocking” to the asymmetry.

1 Introduction

The possible breaking of parton model symmetries by the
nucleon’s quark distribution functions has been a topic of
great interest since the experimental discoveries that the
Ellis–Jaffe [1] and Gottfried [2] sum rules are violated.
In particular, the flavor asymmetry in the nucleon sea
(d̄ > ū) has been confirmed by several experiments [3,
4], and the x-dependence of this asymmetry has been in-
vestigated. This asymmetry can be naturally explained
in the meson cloud model, in which the physical nucleon
wave function contains many virtual meson–baryon com-
ponents, and the valence anti-quark in the meson con-
tributes (via a convolution) to the anti-quark distribu-
tions in the proton sea. Since the probability of the Fock
state |nπ+〉 is larger than that of the |∆++π−〉 state in
the proton wave function, the asymmetry d̄ > ū emerges
naturally in the proton sea. There have been many theo-
retical investigations (see e.g. [5–8] and references therein)
on this subject.

Recently, there has been increasing interest in the
question of whether this asymmetry extends also to the
polarized sea distributions, i.e. ∆d̄(x) �= ∆ū(x). Such a
polarized sea asymmetry would make a direct contribution
to the Bjorken sum rule. Although well established experi-
mental evidence for a polarized sea asymmetry is still lack-
ing, some experimental studies have been done [9]. More-
over, several parameterizations [10] for the polarized par-
ton distributions arising from fits of the world data from
polarized experiments leave open the possibility of this
asymmetry. There have also been some theoretical studies
on this asymmetry. In [11,12], the polarized sea asymme-
tries are calculated in the chiral quark-soliton model (us-
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ing the large-NC limit). Sizable results for ∆d̄(x)−∆ū(x)
and ∆d̄(x) +∆ū(x)− 2∆s̄(x) were found, and it was fur-
ther predicted that the flavor asymmetry of the polarized
sea distributions is larger than that of the unpolarized
sea distributions, i.e. |∆d̄(x) − ∆ū(x)| > |d̄(x) − ū(x)|.
Such sizable asymmetries would make an important con-
tribution (around 20%) to the Bjorken sum rule. Fries
and Schäfer [13] calculated the non-strange polarized sea
asymmetry by considering the ρ meson cloud in the me-
son cloud model. Their prediction for ∆d̄(x) − ∆ū(x) is
more than one order of magnitude smaller than the re-
sult from the chiral quark-soliton model. Boreskov and
Kaidalov [14] analyzed this asymmetry by calculating the
Regge cut contribution to the imaginary part of the high-
energy photon–nucleon scattering amplitude. They found
that the interference between the amplitudes for the pho-
ton coupling to a pion or to a rho meson can provide
a sizable polarized anti-quark asymmetry in the small x
region. This asymmetry has also been discussed in the
instanton model [15] and a statistical model [16] for the
parton distributions of the nucleon.

In this paper we investigate the flavor asymmetry of
the non-strange polarized anti-quarks using the meson
cloud model. We include both the vector meson cloud and
the interference terms of the pseudoscalar and the vector
mesons. Such interference terms appear naturally in the
meson cloud model.

In Sect. 2, we derive the formulas in the meson cloud
model to calculate the flavor asymmetry of non-strange
polarized anti-quark distributions. The numerical results
are given in Sect. 3 along with a discussion. In Sect. 4, we
discuss how a contribution to the flavor asymmetry can
arise from the fermion nature of the quarks, often called
Pauli blocking. Section 5 is a summary.
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2 Flavor asymmetry
in the meson cloud model

In the meson cloud model (MCM) the nucleon can be
viewed as a bare nucleon plus some meson–baryon Fock
states which result from the fluctuation N → MB. The
wave function of the nucleon can be written as [6]

|N〉physical = Z|N〉bare +
∑
MB

∑
λλ′

∫
dyd2k⊥φλλ′

MB(y, k
2
⊥)

×|Mλ(y,k⊥);Bλ′
(1 − y,−k⊥)〉, (1)

where Z is the wave function renormalization constant,
φλλ′

MB(y, k
2
⊥) is the wave function of the Fock state contain-

ing a meson (M) with longitudinal momentum fraction y,
transverse momentum k⊥, and helicity λ, and a baryon
(B) with momentum fraction 1 − y, transverse momen-
tum −k⊥, and helicity λ′. The model assumes that the
life time of a virtual baryon–meson Fock state is much
larger than the interaction time in the deep inelastic or
Drell–Yan process, thus the quark and anti-quark in the
virtual meson–baryon Fock states can contribute to the
parton distributions of the nucleon. For spin independent
parton distributions these non-perturbative contribution
can usually be expressed as a convolution of fluctuation
functions with the valence parton distributions in the me-
son and/or baryon. For polarized parton distributions in
the model it is necessary to include all the terms which
can lead to the same final state [17]. This allows for the
possibility of interference terms between different terms in
the nucleon wave function (1). The effect of interference
between Nπ and ∆π terms on polarized quark distribu-
tions was calculated in [18,19]. For polarized anti-quark
distributions the interference will be between terms with
different mesons and the same baryon, e.g. Nπ and Nρ;
see Fig. 1.

We can write the total meson cloud contribution to the
distribution of anti-quarks of a given flavor with helicity
σ as

xδq̄σ(x) =
∑

λ

∫ 1

x

dyfλ
(M1M2)B/N (y)

×x

y
q̄σ
(M1M2)λ

(
x

y

)
, (2)

where

fλ
(M1M2)B/N (y)

=
∑
λ′

∫ ∞

0
dk2

⊥φλλ′
M1B(y, k

2
⊥)φ

∗λλ′
M2B(y, k

2
⊥) (3)

is the helicity dependent fluctuation function. The second
meson (M2) could be the same as or different from the
first meson (M1).

For simplicity we denote (2) as

xδq̄σ =
∑

λ

fλ
(M1M2)B/N ⊗ q̄σ

(M1M2)λ. (4)

P (w ) P (w )

π ρ

N,∆ (w )

Fig. 1. Schematic illustration of interference contributions to
the polarized anti-quark distributions

The two mesons appearing in (4) may be both vector
mesons (V ) or one pseudoscalar meson (P ) plus one vector
meson (V ), that is

xδq̄σ =
∑

λ=0,±1

fλ
V B/N ⊗ q̄σ

Vλ
+

∑
λ=0,±1

fλ
(V1V2)B/N ⊗ q̄σ

(V1V2)λ

+
∑
λ=0

f0
(PV )B/N ⊗ q̄σ

(PV )0 . (5)

Observing that (see the discussion below)

q̄↑
(V1V2)1

= q̄↓
(V1V2)−1

, q̄↓
(V1V2)1

= q̄↑
(V1V2)−1

,

q̄↑
(V1V2)0

= q̄↓
(V1V2)0

, q̄↑
(PV )0

�= q̄↓
(PV )0

, (6)

and denoting

∆f(V1V2)B/N = f1
(V1V2)B/N − f−1

(V1V2)B/N , (7)

∆q̄V1V2 = q̄↑
(V1V2)1

− q̄↓
(V1V2)−1

,

∆q̄(PV )0 = q̄↑
(PV )0

− q̄↓
(PV )0

, (8)

we have

x(∆q̄) = xδq̄↑ − xδq̄↓

= ∆fV B/N ⊗ ∆q̄V +∆f(V1V2)B/N ⊗ ∆q̄V1V2

+f(PV )B/N ⊗ ∆q̄PV . (9)

The first term in (9) comes from the vector meson cloud,
which has been considered in [13]. The second and third
terms, which are first included in this study, result from
the interference between terms with two different vector
mesons (ρ, ω) and between terms with a vector meson
(ρ, ω) and a pseudoscalar meson (π) respectively. Equa-
tion (9) explicitly shows the existence of the interference
contributions. We would like to point out that the above
interference terms do not contribute to the unpolarized
parton distributions due to the flavor–spin structure of
the SU(6) wave function. For example, the π+–ρ+ inter-
ference term contributes to d̄↑ and d̄↓ with equal magni-
tude but opposite sign (see the below expressions for the
wave functions), so the result is zero when the helicities
are summed. The SU(6) wave function also leads to a zero
contribution to the polarized anti-quark distribution from
π–η interference terms.

The interference distributions (∆q̄ρω, ∆q̄πρ, ∆q̄πω, q =
u, d) do not have the same straightforward interpreta-
tion as the quark distributions. However, using the quark
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model with SU(6) wave functions we can relate these dis-
tributions to the polarized anti-quark distributions of the
vector mesons. In the quark model, the valence wave func-
tions of the π, ρ and ω mesons can be written as [20]

|π+〉 = 1√
2
(d̄↑u↓ − d̄↓u↑)ψπ(x, k⊥),

|π0〉 = 1
2
(ū↑u↓ − ū↓u↑ − d̄↑d↓ + d̄↓d↑

)ψπ(x, k⊥),

|π−〉 = 1√
2
(ū↑d↓ − ū↓d↑)ψπ(x, k⊥), (10)

|ρ+〉1,1 = d̄↑u↑ψρ(x, k⊥),

|ρ+〉1,0 =
1√
2
(d̄↑u↓ + d̄↓u↑)ψρ(x, k⊥),

|ρ+〉1,−1 = d̄↓u↓ψρ(x, k⊥),

|ρ0〉1,1 =
1√
2
(ū↑u↑ − d̄↑d↑)ψρ(x, k⊥),

|ρ0〉1,0 =
1
2
(ū↑u↓ + ū↓u↑ − d̄↑d↓ − d̄↓d↑)ψρ(x, k⊥),

|ρ0〉1,−1 =
1√
2
(ū↓u↓ − d̄↓d↓)ψρ(x, k⊥),

|ρ−〉1,1 = ū↑d↑ψρ(x, k⊥),

|ρ−〉1,0 =
1√
2
(ū↑d↓ + ū↓d↑)ψρ(x, k⊥),

|ρ−〉1,−1 = ū↓d↓ψρ(x, k⊥), (11)

|ω〉1,1 =
1√
2
(ū↑u↑ + d̄↑d↑)ψω(x, k⊥),

|ω〉1,0 =
1
2
(ū↑u↓ + ū↓u↑ + d̄↑d↓ + d̄↓d↑)ψω(x, k⊥),

|ω〉1,−1 =
1√
2
(ū↓u↓ + d̄↓d↓)ψω(x, k⊥), (12)

where ψM (x, k⊥) is a two-body light-cone wave function.
The ω meson has been treated as an ideal mixture of an
octet and a singlet. Note that the distribution φ(x) =∫
d2k⊥|ψ(x, k⊥)|2 is not the “true” parton distribution

since only the lowest Fock state is considered and the nor-
malization condition is not satisfied (

∫ 1
0 φ(x)dx < 1). Em-

ploying the above wave functions and assuming ψπ(x, k⊥)
= ψρ(x, k⊥) = ψω(x, k⊥), we can obtain the following re-
lations between the polarized anti-quark distributions and
the interference distributions:

∆d̄ρ+ = ∆ūρ− = 2∆d̄ρ0 = 2∆ūρ0 = 2∆d̄ω = 2∆ūω

= φ(x),

∆d̄ρ0ω = −∆ūρ0ω = −1
2
φ(x),

∆d̄(π+ρ+)0 = ∆ū(π−ρ−)0 = 2∆d̄(π0ρ0)0 = 2∆ū(π0ρ0)0

= φ(x),

∆d̄(π0ω)0 = −∆ū(π0ω)0 = −1
2
φ(x). (13)

Although the above relations are derived from the quark
model and by considering only the lowest Fock states, we

will assume they hold for the full wave function. Thus the
distribution φ(x) can be replaced with the polarized par-
ton distribution ∆vρ = ∆d̄ρ+ = ∆ūρ− which, in principle,
can be measured experimentally. We adopt two prescrip-
tions to obtain the ∆vρ:
(i) employing the MIT bag model, and
(ii) adopting the ansatz used in [13], i.e. relating it to the
valence quark distribution of the π meson inspired by the
lattice calculation of the first moments of the polarized
and unpolarized parton distributions of the ρ meson.

We will consider the fluctuations p → Nπ,Nρ,Nω and
p → ∆π,∆ρ. We neglect the fluctuation p → ∆ω as this
fluctuation is forbidden by isospin. The following relations
exist for the fluctuation functions [21],

∆fρ+n/p = 2∆fρ0p/p =
2
3
∆fρN/N ,

∆fρ−∆++/p =
3
2
∆fρ0∆+/p = 3∆fρ+∆0/p =

1
2
∆fρ∆/N ,

f(π+ρ+)n/p = 2f(π0ρ0)p/p = f(πρ)N/N ,

f(π−ρ−)∆++/p =
3
2
f(π0ρ0)∆+/p = 3f(π+ρ+)∆0/p

=
1
2
f(πρ)∆/N . (14)

Using (13) and (14) we can obtain from (9),

x(∆d̄ − ∆ū)

=

[
2
3
∆fρN/N − 1

3
∆fρ∆/N

]
⊗ ∆vρ +

[
− ∆f(ρ0ω)p/p

+
2
3
f0
(πρ)N/N − 1

3
f0
(πρ)∆/N − f0

(π0ω)p/p

]
⊗ ∆vρ

= ∆fρ ⊗ ∆vρ +∆fint ⊗ ∆vρ. (15)

The first term is the same as the result given in [13]. We
note that there are no contributions directly from the ω
meson due to its charge structure. The second term is the
interference contribution.

Now we turn to the calculation of the fluctuation func-
tions. The fluctuation N → MB is described by the effec-
tive interaction Lagrangians [6],

LNNπ = igNNπN̄γ5πN,

LN∆π = fN∆πN̄∂µπ∆
µ + h.c.,

LNNV = gNNV N̄γµθ
µN + fNNV N̄σµνN(∂µθν − ∂νθµ),

LN∆ρ = fN∆ρiN̄γ5γµ∆ν(∂µθν − ∂νθµ) + h.c., (16)

where N is a spin-1/2 field, ∆ a spin-3/2 field of Rarita–
Schwinger form, π a pseudoscalar field, and θ a vector
field. The coupling constants are taken to be [6,22]

g2
NNπ/4π = 13.6,
g2

NNρ/4π = 0.84,

fNNρ/gNNρ = 6.1/4mN ,

g2
NNω/4π = 8.1,
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fNNω/gNNω = 0,

f2
N∆π/4π = 12.3GeV−2,

f2
N∆ρ/4π = 34.5GeV−2. (17)

The amplitudes φλλ′
MB(y, k

2
⊥) which essentially determine

the fluctuation function (see (3)) are calculated by using
time-ordered perturbation theory in the infinite momen-
tum frame,

φλλ′
MB(y, k

2
⊥) =

1
2π

√
y(1 − y)

×
√
mNmBV λλ′

IMF (y, k
2
⊥)GMB(y, k2

⊥)
m2

N − m2
MB(y, k

2
⊥)

, (18)

wherem2
MB is the invariant mass squared of theMB Fock

state,

m2
MB(y, k

2
⊥) =

m2
M + k2

⊥
y

+
m2

B + k2
⊥

1 − y
. (19)

As usual a phenomenological vertex form factor, GMB(y,
k2

⊥), is introduced to describe the unknown dynamics of
the fluctuation N → MB. Here we adopt the exponential
form,

GMB(y, k2
⊥) = exp

[
m2

N − mMB(y, k2
⊥)

2Λ2

]
, (20)

where Λ is a cut-off parameter. We adopt Λoct = 1.08GeV
and Λdec = 0.98GeV for the fluctuations involving the
octet and decuplet baryons respectively [6]. This form fac-
tor satisfies the relation GMB(y, k2

⊥) = GBM (1 − y, k2
⊥).

We note that there are two prescriptions for calculating
the vertex functions VIMF , depending on the manner in
which the meson energy is treated. In this work we follow
the prescription used in [6], i.e. the meson energy in the
vertex is EN −EB , which is called method (B) in [13]. The
expressions for the various fluctuation functions in (15) are
given in the appendix. These expressions agree with the
vertex functions given in [6], but differ from those given
in the appendix of [13] in the following ways:
(1) The terms proportional to fNNρgNNρ in fλ

ρN/N (y)
have the opposite sign;
(2) Our results for fλ

ρ∆/N (y) agree with the results of
method (A) in [13] ((24) and (26) in the appendix of [13]),
rather than the results of method (B). Finally, we note
that adopting the alternative method (method (A) of [13])
leads to somewhat smaller values of (∆d̄ − ∆ū), but does
not change our conclusions significantly.

There is little experimental information on the parton
distributions of the vector meson. Although it is common
practice to set the unpolarized parton distribution of the
ρ meson equal to that of the pion, the study of the polar-
ized parton distribution of the ρ meson is lacking both in
experiment and theory. The lattice calculation [23] finds
that the polarization of the ρ meson is about 60%. So the
ansatz ∆vρ(x) = 0.6vπ(x) was used in [13]. We note that
the lattice prediction of 60% polarization is for the ratio

of the first moments of the polarized and unpolarized par-
ton distributions, i.e.

∫ 1
0 ∆vρ(x)dx = 0.6

∫ 1
0 vρ(x)dx and

it is quite possible that the x-dependence of the polar-
ized parton distribution may be different from that of the
unpolarized one.

As an alternative hypothesis for the x-dependence of
the polarized parton distribution, we employ a non-
perturbative model of hadrons, the MIT bag model [24].
The bag model has been shown to be a useful tool in
the study of the non-perturbative structure of hadrons
(e.g., mass spectrum, parton distribution). The theoreti-
cal calculations [25–27] of the parton distributions of the
nucleon, including meson cloud contributions, can give re-
sults consistent with the experimental data.

An interesting aspect of the bag model calculation is
that it can be generalized to provide useful information on
the parton distributions of the other hadrons. The parton
distributions for both polarized and unpolarized octet and
decuplet baryons have been calculated in the bag model
[18]. However, most present bag model calculations for the
parton distributions are for the baryons. There has been
no attempt in the bag model to calculate the parton dis-
tributions of the mesons. This is due, at least in part, to
the lack of experimental data on the parton distributions
of the mesons1. While the bag model is probably not very
applicable to the pion, it does describe the rest of the
pseudoscalar nonet and the vector octet reasonably well.
So adapting the methods used to calculate baryon parton
distributions to the meson sector should give a useful ap-
proximation to the parton distributions of the mesons, in
particular the ρ meson.

Adapting the argument of [27] we obtain the expres-
sion for the quark distribution function in a ρ meson,
where we include only one-quark intermediate states

q↑↓
ρ,f (x) =

Mρ

(2π)3
∑
m

〈µ|Pf,m|µ〉
∫

dpn

|φ1(pn)|2
|φ2(0)|2

×δ(Mρ(1 − x) − p+
n )|Ψ̃↑↓

+,f (pn)|2. (21)

Here + components of momenta are defined by p+ =
p0 + p3, pn is the 3-momentum of the intermediate state,
Ψ̃ is the Fourier transform of the MIT bag ground state
wave function Ψ(r), and φm(p) is the Fourier transform of
the Hill–Wheeler overlap function between m-quark bag
states:

|φm(p)|2 =
∫

dRe−ip·R
[∫

drΨ †(r − R)Ψ(r)
]m

. (22)

The φ functions arise through the use of the Peierls-Yoccoz
projection to form momentum eigenstates from the initial
and intermediate bag states. The matrix element
〈µ|Pf,m|µ〉 appearing in (21) is the matrix element of the
projection operator Pf,m onto the required flavor f and
helicity m for the SU(6) spin–flavor wave function |µ〉 of
the ρ meson.

1 At present only the parameterization for the parton distri-
butions of the pion has been extracted experimentally [28]
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Fig. 2. The polarized and unpolarized valence quark distribu-
tions of the ρ meson at Q2 = 4GeV2. The thick dashed and
solid curves are the bag model calculations for the unpolarized
and polarized distributions respectively. The thin dashed curve
is the unpolarized parton distribution of the π meson [29]. The
thick solid curve is the polarized parton distribution of the ρ
meson using the ansatz ∆vρ(x) = 0.6vπ(x) [13]

3 Results and discussion

We first fix the parameters of the MIT bag model cal-
culation by fitting the calculated unpolarized parton dis-
tribution of the ρ meson to the Glück–Reya–Schienbein
parameterization (GRS99) [29] for the valence parton dis-
tribution of the pion2, which is essentially fixed by the
π–N Drell–Yan data. For the parton distributions of the
nucleon, the bag model calculations with only two-quark
intermediate states are usually smaller than the data in
the small x region and do not satisfy the normalization
condition of the probability, i.e. P2 < 1 rather than P2 =
1 [25–27]. It is necessary to include intermediate states
with three quarks and one anti-quark, arising from the
action of the field operator (ψ = b + d†) on the three-
quark bag state. This allows the normalization condition
to be satisfied. Such contributions from multi-quark in-
termediate states can be well parameterized by the form
f4(x) = N4(1 − x)7 consistent with the Drell–Yan–West
relation [27]. For simplicity we will employ a similar func-
tion form, f3(x) = N3(1− x)5, to parameterize the three-
quark (and two-quark plus one-anti-quark) intermediate
state contributions to the unpolarized parton distributions
of the ρ meson. The value of N3 is determined from the
normalization condition P1+P3 = 1, where P1 and P3 are
the probabilities of the one-quark and three-quark inter-
mediate states respectively. The parameters needing to be
fixed are the radius of the bagR, the mass of the one-quark
intermediate state m1, and the low momentum scale µ2,
at which the model is supposed to be valid. The next-to-
leading-order GRS99 parameterization is given at a scale
µ2

NLO = 0.40GeV2:

2 As usual we take the unpolarized pion and ρ valence dis-
tributions to be the same

-0.05

0

0.05

0.1

0.15

∆f
ρ(

y)
, ∆

f in
t(y

)

0.0 0.2 0.4 0.6 0.8 1.0
y

Fig. 3. The polarized fluctuation functions for the vector me-
son (the solid curve) and the interference terms (the dashed
curve)

vπ
NLO(x, µ

2
NLO) = 0.696x−0.447(1 − x)0.426, (23)

where vπ = uπ+

v = d̄π+

v . Both the GRS99 parton dis-
tributions and our calculations are evolved to the scale
Q2 = 4GeV2 and the results are shown in Fig. 2. The
thin dashed curve is the GRS99 parameterization, and
the thick dashed curve is the bag model calculation. A
good agreement in the small and intermediate x region
is found for R = 0.7 fm, m1 = 0.55mρ, N3 = 1.68 and
µ2 = 0.23GeV2.

Having fixed the parameters we calculate the polarized
parton distribution of the ρ, x∆vMIT

ρ (x). The result is pre-
sented in Fig. 2 as the thick solid curve. The first moment
of ∆vMIT

ρ (x) is found to be about 0.60 at Q2 = 4GeV2,
which is in agreement with the lattice value of 0.60. For
comparison, the distribution 0.6xvπ(x), which could be
set as the polarized parton distribution according to the
ansatz used in [13], is also shown in Fig. 2 as the thin
solid curve. It can be seen that the distribution 0.6xvπ(x)
is smaller than the bag model calculation x∆vMIT

ρ (x) in
the intermediate x region, although both distributions sat-
isfy the same normalization condition. Also the bag model
polarized parton distribution has a different x-dependence
from the unpolarized distribution.

We show the polarized fluctuation functions of the ρ
meson (∆fρ in (15), the solid curve) and the interference
terms (∆fint in (15), the dashed curve) in Fig. 3. It can be
seen that the maximum of ∆fint is about 40% of that of
∆fρ and that ∆fint changes sign from positive to negative
at about y = 0.6. So the contribution to ∆d̄ − ∆ū from
the interference terms is not negligible.

As we have discussed in the last section, our expres-
sions for fλ

ρN/N and fλ
ρ∆/N are different from those given

in [13]. We show the numerical difference in Fig. 4, where
the fluctuation functions ∆fρNN (dashed curves), ∆fρ∆N

(dotted curves), and ∆fρ = (2/3)∆fρNN − (1/3)∆fρ∆N

(solid curves) which enter directly in the calculation of
∆d̄ − ∆ū (see (15)) are plotted. The thick curves are our
results, while the thin curves are from [13]. In each case
the cut-off parameter in the form factor has been set to
the same value Λoct = Λdec = 0.85GeV. The difference is
about 50%.
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Fig. 5. The flavor asymmetry of the anti-quark in the pro-
ton. The solid curves are the predictions using x∆vMIT

ρ , while
the dashed curves are obtained by using 0.6xvπ(x). The thin
curves are the results without interference terms, while the
thick curves are the results with interference terms

We calculate the flavor asymmetry of the polarized
anti-quark distributions employing both the bag model
distribution x∆vMIT

ρ (x) and 0.6xvπ(x) for the polarized
valence parton distribution of the ρ meson. The results
are shown in Fig. 5. The solid curves are the predictions
using x∆vMIT

ρ (x), while the dashed curves are obtained by
using 0.6xvπ(x). The thin curves are the results without
interference terms while the thick curves are the results
with interference terms. We see that the interference effect
mildly increases the predictions for the flavor asymmetry,
and pushes the curves towards the small x region due to
∆fint being peaked at smaller y (ymax � 0.3) than the
∆fρ (ymax � 0.60). For the calculations with x∆vMIT

ρ (x),
the asymmetry with interference terms included exhibits a
maximum at x � 0.12, while the asymmetry without inter-
ference terms exhibits a maximum at x � 0.18. Also it can
be seen that the calculations with x∆vMIT

ρ (x) (the solid
curves) are larger than that with 0.6xvπ(x) (the dashed

curves) in the intermediate x region, and have their max-
ima at larger x.

The integral

I∆ =
∫ 1

0
dx[∆d̄(x) − ∆ū(x)]

=
∫ 1

0
dx∆vρ(x)

∫ 1

0
dy[∆fρ(y) +∆fint(y)] (24)

will be the same for both models for the polarized parton
distribution of the ρ as they have the same first moment
for the polarized distribution. We find the integral to be
0.023 (0.031) without (with) the interference terms. The
interference effect increases the integral by about 30%.

Using a softer form factor for the octet contributions,
as suggested by the fit of d̄(x) − ū(x) at large x [21],
will lower the value of the integral I∆. For example, tak-
ing Λoct = 0.80GeV and Λdec = 1.0GeV consistent with
the analysis of [21], the integral decreases to −1.1× 10−4

(+5.7 × 10−3) without (with) the interference terms. In
this case the flavor asymmetry between d̄ and ū is very
small. The reason is that the fluctuation p → ∆ρ gives a
negative contribution to the integral I∆ and this fluctua-
tion is greatly emphasized for the above cut-off parame-
ters3. The prediction for the integral I∆ has a strong de-
pendence on the cut-off parameters Λoct and Λdec. For ex-
ample, the results calculated including interference terms
vary from 0.0043 to 0.033 for the cut-off parameters chang-
ing from Λoct = Λdec = 0.8GeV to 1.10GeV. Clearly these
values obtained using the meson cloud model are very dif-
ferent from those obtained using the chiral quark-soliton
model [12] which have a magnitude of around 0.3. It is
interesting that both models agree well with the experi-
mental data for the unpolarized asymmetry, yet predict
very different results for the polarized asymmetry. As the
magnitude of the predicted polarized asymmetry appears
to be fairly natural in each of these models, experimental
data will provide a valuable test of these models, and give
insight into the relation between helicity dependent and
helicity independent observables in quark models.

We do not find that the π–ρ interference terms can be
sizable, which appears to be in disagreement with the con-
clusions of Boreskov and Kaidalov [14]. The main reason
for this disagreement is that we do not here consider in-
terference terms where the ρ meson has non-zero helicity.
This is because any such terms only contribute to am-
plitudes in the virtual Compton scattering which have a
spin-flip between the incoming and outgoing proton states.
These spin-flip amplitudes in turn only contribute to the
cross-section σI, which is the interference between trans-
verse and longitudinal polarizations of the virtual photon
[31]:

σI ∝
√

Q2

M2

[
G1 +

ν

M
G2

]
3 The probabilities for p → Nρ and p → ∆ρ are 0.012 and

0.042 respectively, while the probabilities are 0.189 and 0.034
for the parameter values Λoct = 1.08GeV and Λdec = 0.98GeV
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→
√

Q2

Mν
[g1(x) + g2(x)] in the Bjorken limit. (25)

So any interference terms involving non-zero helicity ρ

mesons can be expected to decrease as 1/
√

Q2 as Q2 gets
large. Using the operator product expansion shows that
the relevant operators are all twist 3 or higher. As the
experimental data for g1(x) for both the proton and the
neutron show no marked Q2 dependence, we conclude that
these higher twist contributions are not relevant at the ex-
perimental scales.

4 Pauli blocking contributions
to the flavor asymmetry

We have not so far considered any contribution to the
asymmetry arising from “Pauli blocking” effects [21,25,
32]. In a model such as the bag model, where the valence
quarks are confined by a scalar field, the vacuum inside
a hadron is different from the vacuum outside. This man-
ifests itself as a distortion in the negative energy Dirac
sea, which is full for the outside (or free) vacuum, whereas
there will be empty states in the Dirac sea of the bag. To
an external probe this change in vacuum structure ap-
pears as an intrinsic, non-perturbative sea of qq̄ pairs [33].
This change in the vacuum is similar to the change in
the Fermi–Dirac distribution when the temperature is in-
creased to above absolute zero. Now when a quark is put
into the ground state of the bag it will have the effect of
filling some of the empty negative energy states in the sea
of the bag vacuum. The reason for this is that the ground
state wave function can be written as a wave packet in
terms of plane wave states of positive and negative energy,
with the energy distribution of the wave packet centred at
the ground state energy eigenvalue, but with non-zero con-
tributions from negative energy plane waves. Hence the
presence of a quark in the bag ground state lowers the
probability of a negative energy state being empty, which
is the same as lowering the probability of finding a posi-
tive energy anti-quark. As the proton consists of two up
quarks and one down quark, the probability of finding a ū
anti-quark is reduced more than the probability of finding
a d̄ anti-quark i.e. d̄ > ū. The analysis of [21] showed that,
in the context of the meson cloud model, about 50% of the
observed d̄–ū asymmetry may be due to Pauli blocking.

When we include spin in the analysis of Pauli block-
ing, we find that putting a spin up quark into the bag
ground state has the effect of filling some of the negative
energy spin up quark states in the bag vacuum, which is
equivalent to lowering the probability of finding a positive
energy spin down anti-quark. As the SU(6) wave func-
tion of the spin up proton is dominated by terms with
the two up quarks having spin parallel to the proton spin
and the down quark having spin anti-parallel, Pauli block-
ing predicts that the probabilities of finding spin down
ū anti-quarks and spin up d̄ anti-quarks are reduced i.e.
ū↑ > ū↓, d̄↓ > d̄↑ or ∆ū(x) ≥ 0, ∆d̄(x) ≤ 0.

We can also estimate the contribution of the Pauli
blocking effect to the polarized asymmetry, again using

the Adelaide group’s argument for calculating parton dis-
tributions in the bag model. In the parton model, the anti-
quark distribution functions are given by

q̄↑↓(x) = p+
∑

n

δ(p+(1 − x) − p+
n )

×
∣∣∣∣〈n|1

2
(1 ∓ γ5)Ψ †

+(0)|p, s〉
∣∣∣∣
2

. (26)

The appropriate intermediate state |n〉 consists of four
quarks. If we assume the SU(6) wave function for the pro-
ton with spin +1/2, and insert an additional quark only
into the radial ground state, then we have the following
matrix elements for the projection operators onto spin and
flavor [27]

〈µ|P (q)
u,+1/2|µ〉 = 4

3
, 〈µ|P (q)

u,−1/2|µ〉 = 8
3
,

〈µ|P (q)
d,+1/2|µ〉 = 8

3
, 〈µ|P (q)

d,−1/2|µ〉 = 7
3
. (27)

We have ignored any effects of spin–spin coupling in the in-
termediate state. Following the argument of the Adelaide
group for calculating the parton distributions we can then
write the anti-quark distributions as

ū↑↓ = 2F(4)(x) ± 2
3
G(4)(x),

d̄↑↓ =
5
2
F(4)(x) ∓ 1

6
G(4)(x), (28)

where F(4)(x) and G(4)(x) are the spin independent and
spin dependent kinematic integrals over the momentum of
the intermediate four quark state. The sea asymmetries
can then be expressed as

d̄(x) − ū(x) = F(4)(x),

∆d̄(x) − ∆ū(x) = −5
3
G(4)(x). (29)

As G(4)(x) is positive at all x, Pauli blocking gives a nega-
tive contribution to the spin dependent flavor asymmetry
in the sea, whereas the meson cloud contribution tended
to be positive. Also noting that as F(4)(x) ≥ G(4)(x), we
can integrate over all x and then obtain an upper limit
for the size of the Pauli blocking contribution to the spin
dependent asymmetry in terms of the contribution to the
spin independent asymmetry:

−
∫ 1

0
dx[∆d̄(x) − ∆ū(x)] ≤ 5

3

∫ 1

0
dx[d̄(x) − ū(x)]. (30)

As an estimate for the integral on the r.h.s. of (30) we may
use the value of 0.07 given by the analysis of [21]. This
then gives an upper limit of about 0.12 for the magni-
tude of the integral over the polarized asymmetry. In the
bag model, the ratio G(4)(x)/F(4)(x) varies from about
0.8 at low x to unity at large x, which gives us a value
of about −0.09 for the integrated polarized asymmetry.
While these values are calculated at some scale appropri-
ate to the bag model, the values of the integrals are not
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much affected by evolution up to experimental scales, so
we expect the relation between polarized and unpolarized
sea asymmetries to be approximately correct at all scales.
The value of the Pauli blocking contribution to the in-
tegrated polarized asymmetry is much larger than that
we have calculated in the meson cloud model, in contrast
to the approximate equality in the unpolarized case. Thus
the experimental observation of any asymmetry in the po-
larized sea distributions is much more a test of the Pauli
blocking hypothesis than of the meson cloud model.

The Bjorken sum rule may be written∫ 1

0
dx [gp

1(x) − gn
1 (x)]

=
1
6

∫ 1

0
dx

[
(∆u(x) − ∆d(x)) + (∆ū(x) − ∆d̄(x))

]
=

1
6

∣∣∣∣gA

gV

∣∣∣∣ (
1 − αs

π

)
. (31)

We estimate that the contribution to the sum rule from
Pauli blocking plus meson cloud effects is about 5–10% of
the value of the sum rule.

We note that the Dortmund group have recently [34]
analyzed the polarized sea asymmetry also using a Pauli
blocking type ansatz, and found a value around −0.3 for
the integrated asymmetry. This would correspond to a
contribution of around 20% to the Bjorken sum rule. The
Dortmund analysis was based on the proposed relation
between polarized distributions:

∆d̄(x)
∆ū(x)

=
∆u(x)
∆d(x)

. (32)

This relation is not obeyed by the distributions in our
analysis. The reason for this is that Pauli blocking should
most affect the ∆ū distribution rather than the ∆d̄ distri-
bution (starting from an assumed SU(6) value of 0), and
hence the l.h.s. of the relation (32) has a magnitude less
than one, while the magnitude of the r.h.s. is greater than
one.

5 Summary

The meson cloud model is very successful in explaining the
flavor asymmetry of the unpolarized parton distributions
in the nucleon sea. In this paper, we have calculated the
flavor asymmetry for the polarized anti-quark distribu-
tions of the nucleon. We have included the contributions
from both the vector meson cloud and the interference
terms between pseudoscalar and vector mesons. We have
used two prescriptions to describe the polarized valence
quark distribution of the ρ meson:
(i) calculating it in the bag model and
(ii) employing the ansatz given in [13] to relate it to the
unpolarized quark distribution of the π meson. Our calcu-
lations show that the interference effect mildly increases
the prediction for ∆d̄(x) − ∆d̄(x) in the intermediate x
region. We have also discussed the effect of “Pauli block-
ing” on the asymmetry, and we have seen that this effect

gives a larger contribution to the asymmetry than meson
cloud effects, in contrast to the unpolarized case.
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Appendix

We give here expressions for the helicity dependent fluc-
tuation functions appearing in (15), where the superscript
1 (−1) is the vector meson helicity.

∆fρN/N = f1
ρN/N − f−1

ρN/N , (33)

f1
ρN/N (y)

=
3

8π2(−1 + y)2y3

∫ ∞

0

dk2
⊥G2

ρN (y, k2
⊥)

[m2
N − m2

ρN (y, k2
⊥)]2

×
{
g2

NNρ

(
k2 +m2

Ny4)
+4f2

NNρ

(
k4 + 5k2m2

Ny2 + 4m4
Ny4)

−4fNNρgNNρmNy
[
2m2

Ny3 + k2 (1 + y)
] }

, (34)

f−1
ρN/N (y)

=
3

8π2(−1 + y)2y3

∫ ∞

0

dk2
⊥G2

ρN (y, k2
⊥)

[m2
N − m2

ρN (y, k2
⊥)]2

×
{
k2

[
g2

NNρ(−1 + y)2 − 4fNNρgNNρmN

× (−1 + y) y + 4f2
NNρ

(
k2 +m2

Ny2) ]}
, (35)

∆fρ∆/N (y) = f1
ρ∆/N (y) − f−1

ρ∆/N (y), (36)

f1
ρ∆/N (y)

=
f2

N∆ρ

24m2
∆π2(−1 + y)4y3

∫ ∞

0

dk2
⊥G2

ρ∆(y, k
2
⊥)

[m2
N − m2

ρ∆(y, k
2
⊥)]2

×
{
k6 + k4m2

∆

(
3 − 4y + 4y2) + k2m∆y

×
[
−4mNm2

ρ (−1 + y)3 +m3
∆y

(
4 − 4y + 3y2)]

+
[
mNm2

ρ (−1 + y)3 +m3
∆y2

]2 }
, (37)

f−1
ρ∆/N (y)

=
f2

N∆ρ

24m2
∆π2(−1 + y)2y3

∫ ∞

0

dk2
⊥G2

ρ∆(y, k
2
⊥)

[m2
N − m2

ρ∆(y, k
2
⊥)]2
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×
{
k4m2

N + k2 [
m2

ρ (−1 + y) + 2m∆mNy
]2

+3m2
∆

[
m2

ρ (−1 + y) +m∆mNy2]2 }
, (38)

∆f(ρ0ω)p/p = f1
(ρ0ω)p/p − f−1

(ρ0ω)p/p, (39)

f1
(ρ0ω)p/p(y)

=
3gNNω

8π2(−1 + y)2y3

×
∫ ∞

0

dk2
⊥GρN (y, k2

⊥)GωN (y, k2
⊥)

[m2
N − m2

ρN (y, k2
⊥)][m

2
N − m2

ωN (y, k2
⊥)]

×
{
gNNρ

(
k2 +m2

Ny4)
−2fNNρmNy

[
2m2

Ny3 + k2 (1 + y)
] }

, (40)

f−1
(ρ0ω)p/p(y)

=
3gNNω

8π2(−1 + y)y3

×
∫ ∞

0

dk2
⊥GρN (y, k2

⊥)GωN (y, k2
⊥)

[m2
N − m2

ρN (y, k2
⊥)][m

2
N − m2

ωN (y, k2
⊥)]

×
{
k2 [gNNρ (−1 + y) − 2fNNρmNy]

}
. (41)

For pseudoscalar–vector interference terms, only helicity
zero contributes at leading twist.

f0
(πρ)N/N (y)

=
3

16mρπ2(−1 + y)3y2

×
∫ ∞

0

dk2
⊥GπN (y, k2

⊥)GρN (y, k2
⊥)

[m2
N − m2

πN (y, k2
⊥)][m

2
N − m2

ρN (y, k2
⊥)]

×
{
gNNπ

[
k2 +mρ

2 (−1 + y) +m2
Ny2] }

×
{

− gNNρmN (−1 + y) y

+fNNρ

[−k2 (−2 + y) +m2
Ny3] }

, (42)

f0
(πρ)∆/N (y)

=
fN∆πfN∆ρmρ

24m∆π2(−1 + y)3y2

×
∫ ∞

0

dk2
⊥Gπ∆(y, k2

⊥)Gρ∆(y, k2
⊥)

[m2
N − m2

π∆(y, k
2
⊥)][m

2
N − m2

ρ∆(y, k
2
⊥)]

×
{
k4 (2 + y) − 2k2

[
2m∆mN (−1 + y)

−m2
N (−1 + y)2 (1 + y) +m2

∆ (−1 + 2y)
]

+
[
m2

∆ − m2
N (−1 + y)2

]2
y
}
, (43)

f0
(π0ω)p/p(y)

=
−3gNNπgNNωmN

16mωπ2(−1 + y)2y

×
∫ ∞

0

dk2
⊥GπN (y, k2

⊥)GρN (y, k2
⊥)

[m2
N − m2

πN (y, k2
⊥)][m

2
N − m2

ωN (y, k2
⊥)]

× [
k2 +m2

ω (−1 + y) +m2
Ny2] . (44)
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13. R.J. Fries, A. Schäfer, Phys. Lett. B 443, 40 (1998); hep-
ph/9805509

14. K.G. Boreskov, A.B. Kaidalov; Eur. Phys. J. C 10, 143
(1999)

15. A.E. Dorokhov, N.I. Kochelev, Yu.A. Zubov, Int. J. Mod.
Phys. A 8, 603 (1993); A.E. Dorokhov, N.I. Kochelev,
Phys. Lett. B 304, 167 (1993)

16. R.S. Bhalerao, Phys. Rev. C 63, 025208 (2001)
17. A.W. Schreiber, A.W. Thomas, Phys. Lett. B 215, 141

(1988)
18. C. Boros, A.W. Thomas, Phys. Rev. D 60, 074017 (1999)
19. A.W. Schreiber, P. Mulders, A.I. Signal, A.W. Thomas,

Phys. Rev. D 45, 3069 (1992); F.M. Steffens, H. Holtmann,
A.W. Thomas, Phys. Lett. B 358, 139 (1995)

20. F.E. Close, An introduction to quarks and partons (Aca-
demic Press Inc., 1979)

21. W. Melnitchouk, J. Speth, A.W. Thomas, Phys. Rev. D
59, 014033 (1998)

22. R. Machleidt, K. Holinde, Ch. Elster, Phys. Rep. 149, 1
(1987)

23. C. Best et al., Phys. Rev. D 56, 2743 (1997)
24. See, e.g., T. DeGrand, R.L. Jaffe, K. Johnson, J. Kiskis,

Phys. Rev. D 12, 2060 (1976)
25. A.I. Signal, A.W. Thomas, Phys. Lett. B 211, 481 (1988);

Phys. Rev. D 40, 2832 (1989)



114 F.-G. Cao, A.I. Signal: The flavor asymmetry of polarized anti-quarks in the nucleon

26. A.W. Schreiber, A.W. Thomas, J.T. Londergan, Phys.
Rev. D 42, 2226 (1990)

27. A.W. Schreiber, A.I. Signal, A.W. Thomas, Phys. Rev. D
44, 2653 (1991)

28. P.J. Sutton, A.D. Martin, R.G. Roberts, W.J. Stirling,
Phys. Rev. D 45, 2349 (1992)

29. M. Glück, E. Reya, I. Schienbein, Eur. Phys. J. C 10, 313
(1999)

30. M. Glück, E. Reya, A. Vogt, Z. Phys. C 53, 651 (1992)
31. R.G. Roberts, The structure of the proton (Cambridge

University Press, 1990)
32. R.D. Field, R.P. Feynman, Phys. Rev. D 15, 2590 (1977)
33. G.V. Dunne, A.W. Thomas, K. Tsushima, hep-

ph/0107042
34. M. Glück, E. Reya, Mod. Phys. Lett. A 15, 883 (2000);

M. Glück, E. Reya, M. Strattmann, W. Vogelsang, hep-
ph/0011215


